- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Cheng, Yanbo (1)
-
Godfrey, Linda (1)
-
Guimaraes, Frederico (1)
-
Killick, David (1)
-
Lehmann, Bernd (1)
-
Mao, Jingwen (1)
-
Mathur, Ryan (1)
-
Powell, Wayne (1)
-
Stephens, Jay (1)
-
Sun, Mingguang (1)
-
Tornos, Fernando (1)
-
Yao, Junming (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Published Sn isotope data along with 150 new analyses of cassiterite and four granite analyses constrain two major tin isotope fractionation steps associated with (1) separation of tin from the magma/orthomagmatic transitional environment and (2) hydrothermal activity. A distinct Sn isotope difference across deposit type, geological host rocks, and time of ore deposit formation demonstrates that the difference in the mean δ124Sn value represents the operation of a unified process. The lower Sn isotope values present in both residual igneous rocks and pegmatite suggest that heavier Sn isotopes were extracted from the system during orthomagmatic fluid separation, likely by F ligands with Sn. Rayleigh distillation models this first F ligand-induced fractionation. The subsequent development of the hydrothermal system is characterized by heavier Sn isotope composition proximal to the intrusion, which persists in spite of Sn isotope fractionating towards isotopically lighter Sn during hydrothermal evolution.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
